
i

Scalable Data Analytics,
Scalable Algorithms, Software Frameworks
and Visualization ICT-2013 4.2.a

Project FP7-619435/SPEEDD
Deliverable D3.3
Distribution Public

 http://speedd-project.eu

Final version of event recognition and

forecasting technology – Part I
Fabiana Fournier (IBM) and Inna Skarbovsky (IBM)

 Status: Submitted (Version 1.0)

ii

 D3.3 v1 Final version of event recognition and forecasting technology

 September 2016

Project
Project Ref. no FP7-619435
Project acronym SPEEDD
Project full title Scalable ProactivE Event-Driven Decision Making
Project site http://speedd-project.eu/
Project start February 2014
Project duration 3 years
EC Project Officer Stefano Bertolo

Deliverable
Deliverable type Prototype
Distribution level Restricted
Deliverable Number D3.3
Deliverable Title Final version of event recognition and forecasting technology
Contractual date of delivery M32 (September 2016)
Actual date of delivery September 2016
Relevant Task(s) WP3/Tasks 3.1-3.3
Partner Responsible IBM
Other contributors NCSR
Number of pages 16
Author(s) Fabiana Fournier (IBM) and Inna Skarbovsky (IBM)
Internal Reviewers Ivo Correia (Feedzai) and Elias Alevizos (NCSR)
Status & version Final
Keywords Complex event processing, forecasted/predicted event, event

recognition, uncertain event

iii

 D3.3 v1 Final version of event recognition and forecasting technology

Executive summary
This document is the first part of Deliverable 3.3 “Final version of event recognition and forecasting
technology” and its purpose is to present the latest results of T3.2 (event recognition under uncertainty)
and T3.3 (event forecasting under uncertainty), and the third version of the event recognition and
forecasting component (software).

This report summarizes our work during months M30-M32, specifically we describe the performance
analysis of recall and precision for the credit card fraud detection use case; and enhancements made to
the event processing network for the traffic management use case. Our findings are consistent in all our
tests in the two use cases. We can achieve a very high level of precision and recall when comparing
PROTON’s performance to the annotated data provided to us.

More importantly, is the comparisons we made between our “certain” and “uncertain” implementations.
In both use cases, the forecasted events are emitted in an average 3 minutes before their counterparts
in the certain case while maintaining a high level of accuracy. This enables operators in both use cases,
to make proactive actions to alleviate the undesired situation, whether it is a congestion or a fraud.

iv

 D3.3 v1 Final version of event recognition and forecasting technology

Document history

Version Date Author Change Description
0.1
0.2

31/08/2016
15/09/2016

Fabiana Fournier (IBM)
Fabiana Fournier (IBM)

First draft
Second draft for internal review

0.3 25/09/2016 Fabiana Fournier (IBM) Updates per internal review
1.0

30/09/2016

Fabiana Fournier (IBM)

Final fixes and cleanup

v

 D3.3 v1 Final version of event recognition and forecasting technology

Table of contents
1 Introduction .. 1

1.1 Purpose and scope of the document .. 1

1.2 Relationship with other documents ... 1

1.3 Updates since the D3.2 re-submission.. 1

2 Extensions made to PROTON .. 2

3 Evaluation of the event processing application for the credit card fraud detection use case 3

3.1 Implementation and evaluation for the fraud detection use case ... 3

3.1.1 Dataset .. 4

3.1.2 Evaluation results .. 4

4 Event processing application for the traffic management use case ... 5

4.1 Addition of a new EPA for forecasting a congestion due to a possible incident on the road 5

4.1.1 Values of operator operands and coefficients of the Sigmoid function 7

4.1.2 Results ... 7

4.2 Inclusion of noise in the input event streams ... 8

5 Summary ... 8

6 References .. 9

List of tables
Table 1: Variable values calculation for Sigmoid function for the PossibleIncident EPA 7

List of figures
Figure 1: Event recognition process for PossibleIncident EPA ... 6
Figure 2: Context for PossibleIncident EPA ... 7

vi

 D3.3 v1 Final version of event recognition and forecasting technology

Acronyms

CEP Complex Event Processing
DM Decision Making
EEP Extendable Expression Parser
EPA Event Processing Agent
EPN Event Processing Network
PETITE Proton EvenT Injection & Time comprEssion
PROTON PROactive Technology ONline
SPEEDD Scalable ProactivE Event-Driven Decision making
WP Work Package

1

1 Introduction

1.1 Purpose and scope of the document
Work Package 3 (WP3) “Real-Time Event Recognition and Forecasting under Uncertainty” deals with all
the developments around event processing technologies under uncertainty. This report is the final
version of SPEEDD (Scalable ProactivE Event-Driven Decision) event recognition and forecasting
technology and it includes final results for T3.2 (event recognition under uncertainty) and T3.3 (event
forecasting under uncertainty), and the final version of the event recognition and forecasting
component (software). This report covers the improvements made to both the use case
implementations and to the CEP tool engine IBM PROactive Technology ONline (PROTON) since the last
report in August 2016 (M30). Specifically, we describe the recall and precision for the credit card fraud
detection use case and an extended event-driven implementation for the traffic management use case.
In addition, we describe the extensions made to PROTON to support this new implementation.

This report is structured as follows: Section 12 summarizes the extensions made to PROTON in these last
couple of months. Section 3 presents our results of our evaluation of the event processing application
for the fraud use case in terms of recall and precision. Sections 34 presents enhancements made to the
traffic management use case implementation. We summarize our report in Section 45.

1.2 Relationship with other documents
At the heart of the SPEEDD prototype resides the complex event processing component, therefore, this
report is strongly related to D6.7 “Final Integrated Prototype” (under preparation to be submitted one
month later than this report, i.e.; M33). The requirements for the CEP engine are dictated from the use
cases in the project, thus, this report is also strongly related to system requirements and evaluation for
the Proactive Traffic Management use case described in D8.3 and for the Proactive Credit Card Fraud
Management described in D7.3. With relation to the traffic management use case, this report is also
related to the developments in the micro simulator, and therefore related to D8.4 “Final Version of
Micro-Simulator”, submitted at month 24.

The main goal of the CEP component is to derive forecasted events that feed the decision making (DM)
component so actions can be taken before an undesired event (such as a congestion situation in the
high way) takes place. Therefore our work is also related to D4.3 “Final version of real-time decision-
making technology”.

1.3 Updates since the D3.2 re-submission
As aforementioned, we describe in this report the additions made during months M30-M32, specifically
we refer to:

2

 D3.3 v1 Final version of event recognition and forecasting technology

Performance analysis of recall and precision for the credit card fraud detection use case; similarly to the
analysis made to the traffic management use case and reported in D3.2 revised version1 (see Section
5.2.2.3). We also recall that the overall performance of the system has been detailed in D3.2 revised
(refer to Section 6) submitted at M32.

An improved event-driven application for the traffic use case that relates to the detection of congestions
due to incidents in the road (Section 4). This includes analysis of recall and precision for this case,
relation to noise in the input events, and the inclusion of new Event processing Agents (EPAs) into our
Event Processing network (EPN).

We note that we follow the semantics and language from [1].

2 Extensions made to PROTON
In order to support the decision making component in the SPEEDD prototype, a new built-in function for
standard deviation has been added to the PROTON EEP (Expandable Expression Parser). The expressions
and functions are tested at build-time and evaluated at runtime by EEP. For a description of EEP please
refer to Section 2.2.5 in D3.1 “First version of event recognition and forecasting technology V1”.

Taking into account standard deviations help us dealing with potential noise inherent in the input events
that result from the inaccuracy of the sensors themselves.

The aim of standard deviation with regards to the traffic use case is to provide the DM module a way to
deal with uncertainty inherent in the input events (for details refer to D4.3 “Final version of real-time
decision-making technology”. The standard deviation is applied in the flow and density attributes in the
corresponding derived events from all the EPAs that compute averages, that is, the
AverageOffRampValuesOverInterval, AverageOnRampValuesOverInterval, and
AverageDensityAndSpeedPerLocationOverInterval (For a complete description of these EPAs refer to1
section 5.1).

1 http://speedd-project.eu/sites/default/files/D3.2_-
_Second_version_of_event_recognition_and_forecasting_technology-revised.pdf

3

 D3.3 v1 Final version of event recognition and forecasting technology

3 Evaluation of the event processing
application for the credit card fraud

detection use case
In this section we describe the evaluation results of the event processing application for the credit card
fraud detection use case in terms of recall and precision. We recall that the overall performance of the
system has been detailed in D3.2 (revised)1 submitted at M32.

For a full description of the EPN for the credit card use case refer to Section 5 in1. Henceforth, we
describe the tests performed in order to validate the application with regards to recall and precision of
the event rules.

3.1 Implementation and evaluation for the fraud detection use case
The main goal of the CEP component with regards to the credit card fraud detection use case is to assess
whether the event patterns can indeed detect fraudulent situations, and whether inclusion of
uncertainty can help in the decision making process. That is, we are looking to answer two questions:

x Can we detect fraudulent situations based on the implemented event patterns?
x Moreover, can we any benefits when including uncertainty aspects?

To address the first question, we had to overcome the main limitation of testing on real data due to
privacy issues. As it has been cleared to us, the thresholds for the patterns and windows given to us
were not the ones used by Feedzai’s system. Furthermore, in order to be able to compare our results,
we needed a data set that can be run using Feedzai’s system and can be annotated by the system
according to specific patterns. Moreover, we should recall that fraud patterns are quite rare to happen.
To deal with all these challenges and being able to compare the outputs for the two systems, Feedzai
has generated a sufficient number of synthetic transactions that derived the following patterns (for a full
description of the patterns refer to1):

x Consecutive withdrawals of increasing or decreasing amounts for a single card
(IncreasingAmounts and DecreasingAmounts, respectively).

x A high number of transactions in a short time window for a single card (FlashAttack).
x Consecutive attempts to use the same card in different physical locations

(TransactionsInFarAwayPlaces).
x Sudden card use near the expiration date (SuddenCardUseNearTheExpirationDate).

The way to address the second question is to have two applications or EPNs, once including uncertainty
aspects and the other one without uncertainty, i.e. deterministic, and compare between the results of
these two EPNs. This is a common approach in CEP engines dealing with uncertainty (see for example
in [2]).

4

 D3.3 v1 Final version of event recognition and forecasting technology

3.1.1 Dataset
The dataset comprised 30,000 transactions over a time span of 16 days. We applied our utility PETITE
(Proton EvenT Injection & Time compression) developed in SPEEDD in order to shrink the data into a one
hour run (for a description of PETITE refer to1).

As aforementioned we tested for the detection of five event patterns: IncreasingAmounts,
DecreasingAmounts, FlashAttack, TransactionsInFarAwayPlaces, SuddenCardUseNearTheExpirationDate.

3.1.2 Evaluation results
As explained above, we performed two types of tests, one to address the accuracy of our patterns, and
the other to address the potential benefit of applying uncertainty aspects in the patterns.

For the first case, we run our application without applying uncertainty, and compared to the
annotations received from Feedzai’s system. Feedzai’s system flagged 9038 transactions as fraud, while
PROTON flagged 8908. Our run yielded a precision of 1 and recall of 0.985. That is all PROTON’s patterns
derived corrected output (fraudulent transactions) yielding a precision value of 1; while we haven’t
“caught” 130 fraudulent transactions marked by Feedzai but not by PROTON . Further investigation of
the results, revealed the main reason for the discrepancies. The most frequent pattern is the
FlashAttack. In this particular pattern, Feedzai’s system used a sliding overlapping window of seven
minutes, while we used a non-overlapping window. Thus, we “missed” borderline fraudulent
transactions that happened at the end of the windows. Evidently, changing the non-overlapping
windows policy to the sliding one will improve the results from the recall point of view, but in turn; it will
result in multiple reports of the same card (and transactions) possibly annoying the operators. Therefore,
we reserve this change for the future if indeed required by the domain experts despite the potential
multiple reports of the same card.

For the second case, we run the same dataset but using the uncertain version of PROTON and compared
the results with our previous ones (with no use of uncertainty, i.e., certain patterns). In this case, we
derive a suspicious fraud alert whenever the certainty attribute in the derived event is bigger than 0.6.
In other words, we start alerting using a threshold of 0.6. In this case, our results shown that while we
were able to detect all the “certain” derived events (recall = 1), we sometimes had false positives giving
a precision of 0.97. In other words, we had 250 transactions that we mistakenly flagged as suspicious
fraud. The explanation is straightforward. In the uncertain case we start reporting with fewer
transactions in the matching set. For example, in the IncreasingAmounts we start alerting after 6 events
in the matching set (the threshold for our Sigmoid function and certainty > 0.6) while in the certain case,
we alert only after 7 events are encountered in the matching set). Regarding recall, we are able to
report correctly all found fraudulent transactions, giving no false negatives.

However, more importantly, is the fact that in the uncertain case we were able to alert in an average 3
minutes before its counterpart in the certain case, thus giving enough time to an operator to block a
credit card earlier than they can today.

5

 D3.3 v1 Final version of event recognition and forecasting technology

3.1.2.1 Summary of results
Our results are twofold: first we were able to validate our implementation by comparing our results to
Feedzai’s system, getting a very high level of accuracy. Second, our results show the benefit of including
uncertainty aspects in an event driven application in the domain of credit card fraud. As for the first
case, also when comparing certainty and uncertainty, our results were of a high level of accuracy.
Furthermore, the fact that we can alert ahead of time can have a significant financial impact as we can
avoid allowing “future fraud transactions”. The “extra” time saved, enables an automated system to
block a transaction in an average 3 minutes earlier.

4 Event processing application for the
traffic management use case

In this section we describe the work carried out in the traffic management use case for the last two
months, including the addition of a new EPA for forecasting a rapid congestion as a result of an incident
in the road, and inclusion of noise in the input data. For the full implemented EPN and analysis of recall
and precision refer to 1.

4.1 Addition of a new EPA for forecasting a congestion due to a possible
incident on the road

The motivation for the addition of this new EPA was to forecast a congestion that is caused by a “sudden”
build-up on the road, as opposed to a forecasted congestion which is caused by a “moderate” build-up.
Build-up is defined by a combination of a number of parameters describing the traffic flow, such as
decrease in speed, or increase in occupancy and density. Therefore any of these can be indicators of a
possible congestion.

Therefore, while in the PredictedTrend EPA (refer to1) we were looking for a an increase in the density
values of at least 5 consecutive input events until either we detect a Congestion or a ClearCongestion
event, in this case, we derive a PossibleIncident event whenever we detect an increase in the occupancy
parameter of at least three events over a (short) temporal window of two minutes. Henceforth, we
describe in detail this new EPA.

Motivation: The CEP run-time engine will derive a PossibleIncident event whenever it detects a rapid
increase in the average occupancy values of at least 3 consecutive input events. In other words, we
perceive that a rapid build-up is taking place possibly indicating an incident.

As was mentioned before, the indication for a buildup is dependent on values of a number of
parameters of the flow, and we would like to take these values into account when calculating the
certainty of the PossibleIncident event. As in the past, we use the Sigmoid function for the probability of
the derived event. Therefore the Sigmoid function receives three parameters and four coefficients and
returns 1/ (1 + e^-(a + b1x1+b2x2+b3x3)), where:

6

 D3.3 v1 Final version of event recognition and forecasting technology

x X1 – average occupancy
x X2 – denotes the density
x X3 – trend.count (number of events in the matching set)

We derive an output event (PossibleIncident) only if the ratio of increase in average_occupancy is bigger
than 1.5 (drastic changes in the occupancy values indicating fast build-up due to incident as opposed to
“regular” congestion) and if the certainty of the derived event is above 0.75 (see Figure 1). We take the
speed into account in the initiation of the temporal window for incident detection – the rule is enabled
only if we see a drop in speed below a certain threshold indicating something is “going on” in the section
of the road.

Event recognition process:

Figure 1: Event recognition process for PossibleIncident EPA

Pattern policies:

Evaluation Cardinality Repeated Consumption
DEFERRED UNRESTRICTED FIRST REUSE

Context:

Segmentation: by location_id

Initiator policy: IGNORE

Initiator: AverageDensityAndSpeedPerLocation.average_speed ≤ speed_threshold3

Meaning: We open a single context for a location in order to detect an increasing TREND pattern and
close it after 2 minutes. To this end, the context is opened with the first input event that comes with an

density
trendNumber>2

within
context

filtering

deriving

PossibleIncidentAverageDensityAnd
SpeedPerLocation

problem_id:location_id
Certainty:
Sigmoid(a, b1, b2, b3,x1,x2,x3)

(increasing)
TREND

Condition in derivation:
average_occupancy [last_event]>=
average_occupancy {last_event-1]*1.5 AND
average_occupancy [last_event -1]>=
average_occupancy {last_event-2]*1.5 AND
Certainty>=0.75

7

 D3.3 v1 Final version of event recognition and forecasting technology

average_speed value smaller than threshold3 (we used the value of 40km/hour that was selected in all
our tests up to now to denote congestion). As we use the DEFERRED policy, we only derive a
PredictedIncident event at the end of the temporal window (2 min) if the pattern and the conditions on
the derivation are satisfied.

Figure 2: Context for PossibleIncident EPA

4.1.1 Values of operator operands and coefficients of the Sigmoid function
The following values for the Sigmoid function of the PredictedIncident EPA have been chosen (Table 1).
The values have been selected by assigning probabilities for the two extreme conditions of close to 1
and close to 0, and looking at the simulated data.

Table 1: Variable values calculation for Sigmoid function for the PossibleIncident EPA

x1 X2 X3 probability
43.01 111.51 3 0.269

60 308.419 3 0.5
66.66 218.83 4 0.731
91.44 583.707 6 0.99

The coefficients that match are:

a: -5.089; b1: 0.042; b2: 0.004; and b3: 0.635

4.1.2 Results
In order to test the addition of the new EPA, 10 new simulations with one incident annotation by the
Aimsun simulator have been generated. Unfortunately, only in 2 out of the 10 incident simulations,
happen in the main road. These have been detected by the pattern. However, as this number is very low
we can generalize on our findings.

AverageDensityAndSpeedPerLocation.
average_speed ≤ speed_threshold3

PossibleIncident

AverageDensityAndSpeedPerLocation

2 min

8

 D3.3 v1 Final version of event recognition and forecasting technology

4.2 Inclusion of noise in the input event streams
Generally speaking, there are two types of noise in the sensor input events. The first one is “missing data”
represented by “-1” that appear when there was not an actual value in an attribute (as a result of no
communication, for example). These values can be easily filtered out during the first step in each EPA in
the application. The second type of noise is inherent in the values received due to inaccuracy in the
measurements. In order to cope with this second type of noise, we take the following steps:

1. We calculate the standard deviation over the values of flow and density of the events in the
matching sets of three EPAs: AverageOffRampValuesOverInterval,
AverageOnRampValuesOverInterval, and AverageDensityAndSpeedPerLocationOverInterval. The
corresponding derived events of these EPAs are then consumed by the DM, which in turn uses
these standard deviations values.

2. Some of our operators in the EPN, filter events by density and speed, that is, we only take into
consideration for the pattern matching step, events in between “normal ranges”. This enables
filtering out potential “outliers” events that can result from erroneous measurements in these
attributes and filtering in events in “normal” ranges.

3. In all our patterns, we base our derived events on matching sets with cardinality > 1, thus errors
in measurements in single events are averaged out.

4. Handling “empty” values as “null” and explicitly relate to them at the application level (e.g.,
checking null values and replacing them with some average value).

5 Summary
This report summarizes our work during months M30-M32, specifically we describe the performance
analysis of recall and precision for the credit card fraud detection use case; and enhancements made to
the event processing network for the traffic management use case.

Our findings are consistent in all our tests in the two use cases. We can achieve a very high level of
precision and recall when comparing PROTON’s performance to the annotated data provided to us.

More importantly, is the comparisons we made between our “certain” and “uncertain” implementations.
In both use cases, the forecasted events are emitted in an average 3 minutes before their counterparts
in the certain case while maintaining a high level of accuracy. This enables operators in both use cases,
to make proactive actions to alleviate the undesired situation, whether it is a congestion or a fraud.

9

 D3.3 v1 Final version of event recognition and forecasting technology

6 References

[1]. O. Etzion and P. Niblet. Event processing in action. Manning, 2010
[2]. G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Introducing uncertainty in complex

event processing: model, implementation, and validation. Computing, pages 1–42, 2014. ISSN
0010-485X. doi: 10.1007/s00607-014-0404-y.

Scalable Data Analytics Scalable Algo-
rithms, Software Frameworks and Visu-
alisation ICT-2013.4.2a

Project FP7-619435 / SPEEDD
Deliverable D3.3
Distribution Public

http://speedd-project.eu/

Event Recognition and Forecasting Tech-
nology – Part II

Evangelos Michelioudakis, Nikos Katzouris, Alexan-
der Artikis, Georgios Paliouras

Status: Final (Version 1.0)

February 2017

page i

Project
Project ref.no. FP7-619435
Project acronym SPEEDD
Project full title Scalable ProactivE Event-Driven Decision making
Porject site http://speedd-project.eu/
Project start February 2014
Project duration 3 years
EC Project Officer Stefano Bertolo

Deliverable
Deliverabe type report
Distribution level Public
Deliverable Number D3.3
Deliverable title Event Recognition and Forecasting Technology – Part II
Contractual date of delivery M33 (October 2016)
Actual date of delivery February 2017
Relevant Task(s) WP3/Task 3.1
Partner Responsible NCSR “D”
Other contributors
Number of pages 18
Author(s) Evangelos Michelioudakis, Nikos Katzouris, Alexander Ar-

tikis, Georgios Paliouras
Internal Reviewers
Status & version Final
Keywords Uncertainty, event calculus, statistical relational learning

D3.3: Event Recognition and Forecasting Technology – Part II

page ii

Contents

1 Introduction 3
1.1 History of the Document . 3
1.2 Purpose and Scope of the Document . 3
1.3 Relationship with Other Documents . 4

2 OSL↵: Online Structure Learner 5
2.1 Experimetal Evaluation . 6
2.2 Learning Challenges . 6
2.3 Experimental Setup . 7
2.4 Experimental Results . 7

3 OLED: Online Learning of Event Definitions 9
3.0.1 Online Inductive Logic Programming . 10
3.0.2 The OLED system . 11
3.0.3 Experimental Evaluation . 13

D3.3: Event Recognition and Forecasting Technology – Part II

page iii

List of Tables

2.1 Accuracy and training time. 7

3.1 Performance comparison: OLED vs batch ILP. 14
3.2 Precision and recall for OLED on two test sets of different sizes. 15

D3.3: Event Recognition and Forecasting Technology – Part II

List of Tables page 1 of 18

Executive Summary

This document presents the advancements made in event recognition and forecasting technology of the
SPEEDD project, in order to reason about events and learn event definitions over large amounts of data,
as well as under situations of uncertainty.

SPEEDD implements event recognition methods (also known as event pattern matching or event
pattern detection systems), in order to extract useful information, in the form of events, by processing
time-evolving data that comes from various sources (e.g., various types of sensor, network activity logs,
ATMs, transactions, etc.). The extracted information — recognized and/or forecasted events — can be
exploited by other systems or human experts, in order to monitor an environment and respond to the
occurrence of significant events. Event recognition methods employ rich representation that can natu-
rally and compactly represent events with complex relational structure, e.g., events that are related to
other input/derived events with spatio-temporal constraints. Unfortunately, uncertainty is an unavoid-
able aspect of real-world event recognition applications and it appears to be a consequence of several
factors. Consider for example, noisy or incomplete observations from road sensors, as well as imperfect
definitions fraudulent activity. Under situations of uncertainty, the performance of an event recognition
system may be seriously compromised. Another important characteristic of the SPEEDD project, is
that machine learning algorithms must deal with large amounts of data that continuously evolves. As a
result, the current base of event definitions may need to be refined or new events may appear. There-
fore, the traditional approach of non-incremental batch machine learning algorithms cannot be applied
in SPEEDD.

In the previous deliverable D3.2 we presented our recently developed algorithm for scalable prob-
abilistic incremental learning of event definitions (OSL↵) that addresses the requirements imposed by
the presence of uncertainty and large training sets. OSL↵ takes advantage of the succinct, structured
and declarative representation of the Event Calculus formalism, in order to formally express events and
their effects. To handle the uncertainty, it employs the state-of-the-art probabilistic and relational frame-
work of Markov Logic Networks. The combination of probabilistic and logical modeling gives OSL↵
the advantage of learning event definitions with well defined probabilistic and logical schematics. In
this document, we begin by briefly presenting our developed probabilistic structure learning method that
exploits the background knowledge axiomatization to effectively constrain the search space of possible
structures. Then we present experimental results on fraud management using a synthetic dataset that
was provided by Feedzai.

Effective as it may be, OSL↵ has some limitations that restrict its applicability in the fraud domain.
OSL↵ cannot effectively learn “long” patterns over large constant domains, such as “time” and thus

D3.3: Event Recognition and Forecasting Technology – Part II

List of Tables page 2 of 18

restricts its learning capabilities in learning patterns over the same timepoint due to high computational
complexity. However in the fraud domain there is a natural requirement for learning sequences of
events for card transactions over time in order for the learner to be able to discriminate between the
positive and negative examples. This requirement stems OSL↵ inadequate for the learning task. To
address this issue, we also describe in this document OLED, an alternative relational learning system
that is able to overcome some of these limitations. We present experimental results with OLED that
demonstrate that it is capable of learning efficiently relational patterns of fraudulent behavior. OLED
(Online Learning of Event Definitions) is an Inductive Logic Programming system that, like OSL↵ learns
in online fashion, i.e. in a single-pass over a stream of training data. It can also handle uncertainty,
though less robustly than OSL↵ since it uses a less formal uncertainty handling mechanism than does not
involve a probabilistic semantics. However, this makes OLED’s functionality depend on less expensive
operations, allowing it to overcome some of OSL↵’s limitations in the particular domain.

D3.3: Event Recognition and Forecasting Technology – Part II

page 3 of 18

1

Introduction

1.1 History of the Document

Version Date Author Change Description
0.1 3/10/2016 Evangelos Michelioudakis Set up of the document
0.2 11/10/2016 All Deliverable Authors First version
0.3 12/10/2016 All Deliverable Authors Content adjusted: Fraud Experiments
0.4 1/2/2017 Nikos Katzouris Content adjusted: OLED
0.5 8/2/2017 Evangelos Michelioudakis Content adjusted: OSL↵

1.2 Purpose and Scope of the Document
This document presents the progress of the SPEEDD project in event recognition and forecasting under
uncertainty, as well as the current advancements to machine learning for event definitions. Furthermore,
the presented work identifies the research directions that will be pursued in the third year of the project.

The reader is expected to be familiar with Complex Event Processing, Artificial Intelligence and
Machine Learning techniques, as well as the general intent and concept of the SPEEDD project. The
target relationship is:

• SPEEDD researchers

• SPEEDD audit

SPEEDD emphasises to scalable event recognition, forecasting and machine learning of event def-
initions for Big Data, under situations where uncertainty holds. This document presents the current
advancements and discusses scientific and technological issues that are investigated in Work-Package 3.

D3.3: Event Recognition and Forecasting Technology – Part II

1.3. Relationship with Other Documents page 4 of 18

1.3 Relationship with Other Documents
This document is related to project deliverable D3.1 and D3.2 “Event Recognition and Forecasting
Technology” that present previous work on event recognition and machine learning for the SPEEDD
prototype. Moreover, deliverables D6.1 and D6.5 “The Architecture Design of the SPEEDD Prototype
and Second Integrated Prototype” which present the SPEEDD prototype architecture as well as the
updated version of deliverable D7.1 which outlines the requirements and characteristics of the “Proactive
Credit Card Fraud Management” project use case.

D3.3: Event Recognition and Forecasting Technology – Part II

page 5 of 18

2

OSL↵: Online Structure Learner

Learnt Hypothesis Ht:

0.4 HoldsAt(congestion(lid), t+1) (
HappensAt(fast Slt20(lid), t)^
HappensAt(fast Ogt45(lid), t)

+

MLN�EC Axioms:
HoldsAt(f, t+1) (

InitiatedAt(f, t)

HoldsAt(f, t+1) (
HoldsAt(f, t) ^
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1) (
TerminatedAt(f, t)

¬HoldsAt(f, t+1) (
¬HoldsAt(f, t) ^
¬InitiatedAt(f, t)

OSL↵

Micro-Batch Dt

HappensAt(fast Slt25(53708), 99)
HappensAt(fast Ogt55(53708), 99)
HappensAt(slow Slt15(53708), 99)
HappensAt(slow Ogt65(53708), 99)
Next(99, 100)
HoldsAt(congestion(53708), 100)
. . .

Micro-Batch Dt+1

HappensAt(fast Sgt70(53708), 200)
HappensAt(fast Olt25(53708), 200)
HappensAt(slow Sgt40(53708), 200)
HappensAt(slow Olt18(53708), 200)
Next(200, 201)
¬HoldsAt(congestion(53708), 201)
. . .

. . .

. . .

. . .

Data Stream/Training Examples

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

Figure 2.1: The procedure of OSL↵.

In this section we briefly describe the procedure of OSL↵ which was presented extensively in the
second year deliverable D3.2 Michelioudakis et al. (2015). OSL↵ extends the procedure of OSL, by ex-
ploiting a given background knowledge. Figure 2.1 presents the components of OSL↵. The background
knowledge consists of the MLN�EC axioms (i.e., domain-independent rules) and an already known (pos-
sibly empty) hypothesis (i.e., set of clauses). Each axiom contains query predicates HoldsAt 2 Q that
consist the supervision and template predicates InitiatedAt, TerminatedAt 2 P that specify the
conditions under which a CE starts and stops being recognized. The latter form the target CE definitions
that we want to learn. OSL↵ exploits these axioms in order to create mappings of supervision predicates
into template predicates and search only for explanations of these template predicates. Upon doing so,
OSL↵ does not need to search over time sequences, instead only needs to find appropriate bodies over

D3.3: Event Recognition and Forecasting Technology – Part II

2.1. Experimetal Evaluation page 6 of 18

the current time-point for the following definite clauses:

InitiatedAt(f , t)(body

TerminatedAt(f , t)(body

At any step t of the online procedure a training example (micro-batch) Dt arrives containing simple
derived events (SDEs), e.g. a card transaction happens having amount between 200 and 300 euros. Dt

is used together with the already learnt hypothesis to predict the truth values yPt of the composite events
(CEs) of interest. This is achieved by (maximum a posteriori) MAP inference based on LP-relaxed
Integer Linear Programming Huynh and Mooney (2009). Given Dt OSL↵ constructs a hypergraph that
represents the space of possible structures as graph paths. Then for all incorrectly predicted CEs the
hypergraph is searched, guided by MLN�EC axioms and path mode declarations Huynh and Mooney
(2011) using relational pathfinding Richards and Mooney (1992) up to a predefined length, for definite
clauses explaining these CEs. The paths discovered during the search correspond to conjunctions of
true ground atoms and are generalized into first-order clauses by replacing constants in the conjunction
with variables. Then, these conjunctions are used as a body to form definite clauses using as head the
template predicate present in each path. The resulting set of formulas is converted into clausal normal
form and evaluated. The weights of the retained clauses are then optimized by the AdaGrad online
learner Duchi et al. (2011). Finally, the weighted clauses are appended to the hypothesis Ht and the
procedure is repeated for the next training example Dt+1.

2.1 Experimetal Evaluation
In this section we evaluate OSL↵, our recently developed online structure learner, in the domain of fraud
management. The aim of the experiments is to assess the effectiveness of our learner in learning both
the structure and their parameters used for recognizing CEs, based on imperfect CE definitions and in
the presence of incomplete narratives of SDEs. We demonstrate OSL↵, in the fraud management use
case by using the synthetic transaction data containing only positive examples provided by Feedzai. The
fraud occurrences in this dataset are produced using a set of predefined fraud patterns. Examples of such
patterns include the “increasing/decreasing amounts” pattern, where fraudulent behavior is inferred if
a number of consecutive transactions occur for a particular card, where the amount of each transaction
is respectively larger/smaller than the amount of the previous one. In this task, the aim is to recognize
fraudulent transactions, by exploiting card transaction sequences to essentially learn the patterns that
produced the synthetic data. The dataset comprises 30000 transactions (5.3MiB) and 2079 timepoints,
where each timepoint represents a distinct card transaction and is annotated either fraud or not. These
transaction information constitute the simple derived events (SDEs) that concern activity on individual
cards. Finally, we also attempted to learn from a similar synthetic dataset generated using the same fraud
patterns but including non-fraudulent sequences (negative examples) of transactions. As we describe at
the end of the experimental results OSL↵ was unable to learn qualitative rules.

2.2 Learning Challenges
The learning problem at hand is characterized by a set of learning challenges that render OSL↵ unable
to learn qualitative fraud patterns using the Event Calculus formalism. The first challenge is the absence
of negative examples in the training data, rendering OSL↵ unable to discriminate the qualitative rules
and render the use of inertia, that Event Calculus incorporates, harmful because we OSL↵ cannot learn
termination conditions without negative examples. Secondly, OSL↵ currently cannot learn sequences

D3.3: Event Recognition and Forecasting Technology – Part II

2.3. Experimental Setup page 7 of 18

using Event Calculus because it does support learning hierarchical definitions. In order to tackle the
aforementioned problems we removed the Event Calculus formalism as background knowledge from
OSL↵ (and therefore the law of inertia) and learned simple, short time sequences of transactions patterns
that trigger a fraud event for a specific card.

2.3 Experimental Setup
The data are stored in a PostgreSQL database and the training sequence for each micro-batch is con-
structed dynamically by querying the database. A set of predicates are used to discretize the numerical
data (transaction amounts) and produce input events such as, for instance High Amount(b67a9a5, 100),
representing that the transaction amount for a particular card is between 200 and 300 euro at timepoint
100. The CE supervision indicates when a fraudulent transaction is present. Each training sequence is
composed of input SDEs and the corresponding CE annotations (Fraud). The total length of the training
sequence consists of 2079 timepoints. We consider only SDEs for amounts. The evaluation results are
presented in terms of F1 score. All reported statistics are micro-averaged over the instances of recog-
nized CEs using 10-fold cross validation over the entire dataset using 20 timepoint micro-batches. At
each fold, an interval of 270 timepoints was left out and used for testing. The experiments were per-
formed in a computer with an Intel i7 4790@3.6GHz processor (4 cores and 8 threads) and 16GiB of
RAM, running Ubuntu 16.04.

2.4 Experimental Results
Table 2.1 presents the evaluation results for OSL↵ for learned patterns of length 3 and 4. The predictive
accuracy of the learned model is very high and almost identical for both cases, while the training time
for the shorter patterns decreases considerably. The results indicate that patterns having length 3 are
sufficient to learn useful rules for this particular dataset, that is due to the absence of negative examples.

Max Length Precision Recall F1 score Avg. training time (minutes)

3 0.9950 0.8282 0.9040 2

4 0.9950 0.8296 0.9048 88

Table 2.1: Accuracy and training time.

Below we present a selection of the rules learned by OSL↵ in order to give an intuition about the
training data and the learner’s ability to achieve such high accuracy in this particular dataset. The weight
in front of each rule indicate the rule’s confidence. Rule (2.1) captures the pattern small amount before
big amount which is a small sequence consisting of only a pair of events, while rules (2.2) and (2.3)
capture the larger sequential patterns for flash attacks or increasing/decreasing amounts. Note that the
learner can capture this type of patterns by using only a subset of the events appearing in a large sequence
of amounts. That is because there are no examples of sequences of transactions for the same card that
are not fraudulent. Therefore OSL↵ learns that if there is a small sequence of amounts in a short period
of time then probably is a fraud regardless if the sequence has more transactions.

D3.3: Event Recognition and Forecasting Technology – Part II

2.4. Experimental Results page 8 of 18

0.49 Fraud(card, t)(
Massive Amount(card, t) ^ Tiny Amount(card, t� 1)

(2.1)

0.63 Fraud(card, t)(
Very High Amount(card, t) ^ Very High Amount(card, t� 1)

(2.2)

0.37 Fraud(card, t)(
High Amount(card, t) ^ Very High Amount(card, t� 1)^
Very High Amount(card, t� 2)

(2.3)

Finally, we also ran experiments for varying batch sizes using maximum pattern length 3 as it
achieves identical F1 score to length 4 and is much faster (see Table 2.1). Figure 2.2 presents the
F1 score and average batch processing time change as the batch size increases. Note that, as expected,
there are minor changes in accuracy by having a different batch size. The reason behind the fluctua-
tions in accuracy for different batch sizes is the fixed window size of timepoints that each micro-batch
contains, because some fraud sequences may split into different batches. As expected the average batch
processing time increases exponentially as the batch size increase due the larger amount of data that the
learner has to process.

200

#iterations

100

00

batch size (timepoints)

50
100

0.95

0.9

0.85

0.8

F 1 s
co

re

100

batch size (SDEs)

50
0100

batch size (timepoints)

50

400

300

200

100

0
0

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

Figure 2.2: F1 score (left) and avg. batch processing time (right) for OSL↵. In the left figure, the Y axis
shows the number of learning iterations.

The experimental evaluation on the synthetic data containing only positive examples clearly shows
that OSL↵ can achieve high accuracy by only learning short sequences of events, but it also witness the
exponential growth in computational complexity for larger sequences (see Table 2.1). Therefore, in the
presence of negative examples, were the learner should discover patterns of much larger sequences in
order to discriminate between fraudulent and non-fraudulent sequences OSL↵ fails to meet the require-
ment. As stated in the beginning of our experimental evaluation, we attempted to run experiments, using
OSL↵, in a synthetic dataset containing non-fraudulent sequences. The experiments resulted in yielding
very high running times and rendering us unable to present any quantitative result.

D3.3: Event Recognition and Forecasting Technology – Part II

page 9 of 18

3

OLED: Online Learning of Event Definitions

Fraudulent behaviour often manifests in the form of relations between different transactions for a par-
ticular card, temporal or otherwise. For instance, fraud analysts tell us that several types of temporal
relations, such as a large-amount transaction that follows after a small-amount one within a small pe-
riod of time, are strong indications of fraudulent behaviour. Such relations between entities may be
expressed by means of logic programming (Paschke and Bichler, 2008; Artikis et al., 2010). As an
illustrating example, we present below two fraudulent behaviour patterns represented as logical rules.

fraud(CardId ,T2)
transaction(CardId ,massive amount ,T2),
transaction(CardId , tiny amount ,T1),
before(T1 ,T2),
within(T1 ,T2 , 1)

(3.1)

fraud(CardId ,T2)
transactionsAtLeast(CardId , 6),
within(T1 ,T2 , 7),
before(T1 ,T2)

(3.2)

The “ ” connective separates the head of the rule (left-hand side) from the body of the rule. The head
consists of a single condition, represented by a logical atom, which is the consequent of the rule, while
the body consists of a set of conditions whose conjunction, denoted by commas, is the antecedent of the
rule. Informally the semantics of such rules is that the head of a rule is true whenever the conjunction
of the conditions in its body are true. We follow Prolog’s notation whereby predicates (e.g. fraud, or
transactions) start with a lower-case letter and variables (e.g. CardId, or T1) start with an upper-case
letter. Rule (3.1) expresses the so-called “big-after-small” fraud pattern, stating that fraud is detected at
time T2 for CardId , if a massive amount transaction for that card occurs at time T2 , a tiny amount

transaction occurs at some earlier time T1, and the temporal interval between T1 and T2 is less than
1 minute (see within(T1 ,T2 , 1) in Rule (3.1)). Rule (3.2) is a version of the so-called “flash-attack”
pattern. It states that fraud is detected at time T2 for card CardId if at least 6 transactions for that card
occur within 7 minutes. A common feature of both rules, therefore, concerns the need to represent the
temporal relations between transactions.

D3.3: Event Recognition and Forecasting Technology – Part II

3.1. Online Inductive Logic Programming page 10 of 18

Typically, in credit card fraud detection relations are propositionalized in a data preprocessing step,
and are “injected” in the data in the form of propositional features. An alternative approach, which is
the one we follow in this work, is to use methods that allow to express and reason with relations, and
attempt to learn relational patterns of fraudulent behaviour.

To this end, we use Inductive Logic Programming (ILP) (De Raedt, 2008), a machine learning
approach that uses logic programming as a unifying language for the representation of training examples,
background domain knowledge and learnt hypotheses. It is therefore well-suited for the task of learning
relational patterns. Given a set of positive and negative examples (logical facts) and, possibly, a logical
theory that expresses some existing knowledge about the domain, the goal of an ILP algorithm is to learn
a logical theory (called hypothesis), which, along with the background knowledge, covers — logically
entails — the positive examples and does not cover the negative ones. In practice, the requirement for
a hypothesis that perfectly discriminates between positive and negative examples is relaxed, to account
for noise, and instead various heuristics are used, guiding the search towards a hypothesis with a good
fit in the data.

In addition to its relational nature, the temporal nature of fraudulent behaviour detection allows to
treat this task as an event recognition problem (Cugola and Margara, 2012). Event recognition systems
process sequences of simple, derived events, such as sensor data, and recognize complex (composite)

events of interest, that is, events that satisfy some temporal (and possibly spatial) pattern. In the credit
card fraud management, a simple event is the occurrence of a transaction in time, while a complex
event is the occurrence of fraudulent behaviour, defined via temporal (and spatial) relations between
individual transactions. Event recognition applications deal with data streams, that is, continous flows
of information. This poses an extra challenge for machine learning, since learning from such streams
requires highly efficient, online algorithms that are able to construct decision models with a single pass
over the training data (Gama and Gaber, 2007; Gama, 2010).

3.1 Online Inductive Logic Programming
Frameworks for online learning are under-explored in ILP. Most ILP systems assume a batch setting,
where all data is typically in place when learning begins. Alternatively, some ILP systems are capable
of theory revision (Esposito et al., 2000), that is, they accept examples over time and gradually alter
previously hypotheses to fit new evidence. Still, such systems need multiple scans of the data to optimise
their theories.

To handle the volume and velocity of training data in the fraud domain, we use OLED (Online Learn-
ing of Event Definitions) (Katzouris et al., 2016), an online relational learner designed for constructing
complex event patterns in single pass over the training data. OLED uses a search heuristic based on a
statistical significance test that allows to learn such event patterns using only a small subset of the data;
OLED relates the size of this subset to a user-defined confidence level on the error margin of not making
a (globally) optimal decision during learning. Below we discuss OLED in more detail.

ILP learners usually employ a divide-and-conquer strategy: Starting with an empty set of rules, a
rule that covers a subset of the examples is constructed, and this process is repeated recursively until all
examples are covered by some rule, or some stopping criteria are met. Each individual rule is constructed
in a top-down fashion, starting from an overly general rule (such as a rule with an empty body), and
gradually specializing it, that is, adding extra conditions to its body. The process is guided by some
heuristic function G that assesses the quality of each specialisation on the entire training set. At each
step, the condition (or set of conditions) with the optimal G-score is selected and the process continues
until certain criteria are met, at which point the rule is considered to be complete and is not further
specialised.

D3.3: Event Recognition and Forecasting Technology – Part II

3.2. The OLED system page 11 of 18

OLED

Theory

Expan-

sion

Rule

Eval-

uation

Rule

Expan-

sion

Rule

Pruning

Background Knowledge &

Language Bias

Learnt Hypothesis Ht:

fraud(CardId ,T2)
transaction(Card ,massive amount ,T2),
transaction(Card , tiny amount ,T1),
before(T1 ,T2),
within(T1 ,T2 , 2).

fraud(CardId ,T2)
transactionsAtLeast(Card , 6),
within(T1 ,T2 , 7),
before(T1 ,T2).

Training example It
trans(1500653 , 420 .0 , d5b9ab0b181 , 200902 , fraud),
trans(1500654 , 0 , 35 , d5b9ab0b181 , 200902 , fraud),
trans(1500655 , 154 .5 , d5b9ab0b181 , 200902 , fraud),
trans(1500656 , 180 .4 , d5b9ab0b181 , 200902 , fraud),
trans(1500657 , 2 .34 , d5b9ab0b181 , 200902 , fraud)

Data Stream/Training Examples

. . .

. . .
Training example It0

trans(1856635 , 420 .0 , 3348af85 , 200902 ,nofraud),
trans(1856636 , 0 , 35 , 3348af85 , 200902 ,nofraud),
trans(1856637 , 154 .5 , 3348af85 , 200902 ,nofraud),
trans(1856638 , 180 .4 , 3348af85 , 200902 ,nofraud),
trans(1856639 , 2 .34 , 3348af85 , 200902 ,nofraud)

. . .

Figure 3.1: An illustration of OLED’s learning strategy.

To adapt this strategy to an online setting, we use the Hoeffding bound (Hoeffding, 1963). Assume
that X is a random variable whose mean value over a stream needs to be approximated. Given a param-
eter �, the Hoeffding bound states that the true mean of X over the stream may be approximated by the
one obtained after n observations from the stream, with probability 1� �, and within an error margin ✏
that decreases with the number of observations n, that is, larger values for n yield better approximations.
OLED adapts the generic ILP strategy mentioned above as follows: First, it relates the random variable
X of the Hoeffding bound principle to the rule evaluation function G, that indicates the best speciali-
sation of a rule out of a pool of candidates. (The evaluation function that we use in this work will be
discussed shortly.) This is done by simply comparing specialisations’ scores as new examples stream-in,
and by monitoring the mean value ¯X of the G-score difference between the best and the second-best
rule at each time. Second, we use the Hoeffding bound to approximate variable X using only n training
examples from the input stream, instead of using the entire training set to find the specialisation with
the optimal G-score. The value of n depends on the error that one is willing to tolerate, of not selecting
the truly (globally) optimal specialisation at some step. Each training example is processed once, to
extract the necessary statistics for the computation of the G-score of candidate specialisations and is
subsequently discarded. This gives rise to a single-pass data strategy.

3.2 The OLED system
In this section we briefly discuss the main functionality of OLED. Its overall strategy is presented in
Figure 3.1. The input consists of a stream of examples. Each example consists of a set of transactions

D3.3: Event Recognition and Forecasting Technology – Part II

3.2. The OLED system page 12 of 18

and it is obtained via windowing, that is, by joining together transactions that fall within a “slice” of
time, such as 15 minutes, or one hour of transactions. In Figure 3.1, a transaction is represented by a
predicate trans, which carries various attributes of the transaction. Only a small number of transaction
attributes are depicted in Figure 3.1 for illustration purposes, namely the time-stamp of the transaction,
its amount, card id and expiration date, as well as a label (fraud/nofraud). In addition to the stream of
training examples, input to OLED is also some background knowledge and language bias. The former
consists of definitions for auxiliary predicates that are necessary during learning, such as the predicates
before, within , or transactionsAtLeast , appearing in Rules (3.1) and (3.2) above. The latter (language
bias) defines the predicates’ payloads.

Learning begins with an empty hypothesis H. On the arrival of new training examples, OLED either
expands H, by generating a new rule, or it tries to expand (specialise) an existing rule. A new rule is
added whenever some positive example is not covered from any of the existing rules in H, while it is
specialised when it covers a large number of negative examples. Rules of low quality (low G-score) are
pruned away, after they have been evaluated on a sufficient number of examples. Each incoming example
is processed once, to extract the necessary statistics for rule evaluation. OLED’s main operations are
discussed next in more detail.

Theory Expansion. Theory expansion consists of the addition of a new rule to theory H, in order
to cover an example I. A new rule is generated in a data-driven fashion, by constructing a bottom rule

from I (De Raedt, 2008). A bottom rule r? is a most-specific rule that covers the example I, that is, a
rule that contains in its body the maximum number of conditions that are true with respect to I. These
conditions are derived from I and the background knowledge. The goal is to use r? as a search space
to obtain a rule r with a good fit in the data. This is done by searching within the space of candidates,
that is, rules that result by combining different conditions from the bottom rule, to find a rule that covers
a large number of positive and a small number of negative examples. For instance, if the bottom rule is

fraud(CardId ,T2)
transaction(CardId ,massive amount ,T2),
transaction(CardId , tiny amount ,T1),
transaction(CardId ,medium amount ,T3),
before(T1 ,T2),
before(T3 ,T2),
before(T3 ,T1),
within(T1 ,T2 , 1)
within(T3 ,T1 , 10)

(3.3)

then any rule with the same head as that of Rule (3.3) and a body consisting of a subset of conditions
from its body, is a candidate in the search space defined by this bottom rule. Below are two candidate
examples:

fraud(CardId ,T2)
transaction(CardId ,massive amount ,T2)

(3.4)

fraud(CardId ,T2)
transaction(CardId , tiny amount ,T1),
before(T1 ,T2)

(3.5)

Formally, the search space is structured by ✓-subsumption (De Raedt, 2008) and the search for a
good rule is guided by the evaluation function G the assesses the quality of candidate rules. The search
space may be traversed either in bottom-up fashion, starting from the bottom rule itself and searching for

D3.3: Event Recognition and Forecasting Technology – Part II

3.3. Experimental Evaluation page 13 of 18

more general rules, or in a top-down fashion, that is, starting from an overly general rule and gradually
searching for more specific ones. OLED follows the latter strategy. Therefore, theory expansion consists
of the addition of a rule r with an empty body to theory H . From that point on, r is gradually specialised
by the addition of extra conditions from the bottom rule to its body, as discussed below.

Rule Evaluation. Each rule and all of its candidate specialisations are constantly evaluated to as-
sess their quality over the input stream. Towards this, OLED calculates statistics for each rule and its
specialisations, cumulatively, as new training examples arrive. These statistics are used for calculating
a rule’s score via the evaluation function G. Any rule evaluation function may be plugged in OLED —
see (Fürnkranz et al., 2012) for an overview of such functions. In this work, we use precision as the rule
evaluation function. Therefore, the statistics collected for each rule consist of the true positive and false
positive example counts, which are updated each time a new training example arrives.

Rule Expansion. This is the process of specialising a rule r by adding conditions to its body
from a bottom rule. As mentioned earlier, we use the Hoeffding bound to select among competing
specialisations of a rule. A rule r is expanded, that is, replaced by its best-scoring (so far) specialisation
from its pool of candidates, when a sufficient number n of examples has been observed, where n is
determined by the Hoeffding bound-based search heuristic. To ensure that no rule r is replaced by a
specialisation of lower quality (lower G-score), r itself is also considered as a potential candidate along
with its specialisations from the pool of candidates. This ensures that expanding a rule to its best-scoring
specialisation after n examples is better, with probability 1� �, than not expanding it at all.

OLED features a tie-breaking mechanism that allows to handle situations where two or more spe-
cialisations turn out to be equally good. We refer to (Katzouris et al., 2016) for more details.

Rule pruning. Often, bad rules may be constructed, whose quality cannot be further improved.
OLED does not attempt to generalise a rule, that is, remove conditions from its body in an effort to
improve its quality due to complexity reasons. Keeping these rules in the hypothesis H and constantly
evaluating them on new examples may be pointless and wasteful. Therefore, OLED supports the removal
of rules whose score is smaller than a quality threshold Smin . Note that a rule that is actually good (over
the entire stream) may score poorly on a sequence of incoming examples. To address this issue, we also
use the Hoeffding bound to determine the number of examples n that suffice to derive the conclusion,
with probability 1� � and within an error margin ✏, that the quality of the rule is indeed below Smin .

OLED is an any-time algorithm, that is, it may output the hypothesis constructed so far at any time
during the learning process. In practice, however, we allow a “warm-up” period in training, in the form
of a minimum number of training instances Nmin on which a clause r must be evaluated before it can be
included in an output hypothesis.

3.3 Experimental Evaluation
To evaluate our approach for automated fraud pattern construction, we used a synthetic dataset created
by Feedzai, that is representative of real credit card transaction streams1. The dataset includes instances
of the following fraud patterns:

• ‘Increasing/Decreasing Amounts’. A sequence of transactions using the same card, with an in-
creasing/decreasing amount withdrawn or spent.

• ‘Big after Small’. An outstandingly large amount after one or a series of small amounts.

• ‘Flash Attack’. A high number of transactions in a very short period of time.
1
http://speedd-project.eu/data

D3.3: Event Recognition and Forecasting Technology – Part II

3.3. Experimental Evaluation page 14 of 18

System F1-score Precision Recall Time (min)
OLED 0.830 0.894 0.776 21

SC 0.892 0.912 0.874 188

Table 3.1: Performance comparison: OLED vs batch ILP.

• ‘Transactions in Faraway Places’. Two or more subsequent transactions in a short period of time
in large distances.

• ‘Card expires’. A transaction occurs too close (e.g. a day before) to a card’s expiration date.

A detailed discussion of these patterns may be found in (Correia et al., 2015).
Positive (fraudulent) examples in the dataset amount to 0.2% of the total number of transactions —

the remaining transactions concern non-fraudulent activity. This is in accordance to the positive/negative
example ratio found in real transactions streams. This imbalance of positive and negative examples
makes the learning task very challenging. An additional challenge is that fraud patterns often consist of
long transaction sequences. This intensifies the learning task since the complexity of a rule increases
with its length. The dataset consists of 10, 000, 000 transactions, which amounts to approximately 200
MBs of data.

In our experiments, the training set was consumed in windows, data batches of a pre-defined time-
span, where the length of each window ranged from a few minutes to one day. The goal of our first
experiment was to assess the trade-off between efficiency and quality of the outcome. To this end, we
compared OLED, performing online learning, to a classic offline (batch) ILP learner, which learns one
rule at a time in a standard set cover loop (De Raedt, 2008), requiring several passes over the data. To
this end, we implemented such an off-line algorithm. We did not use one of the existing ILP learners
for this task, like Aleph2 or Progol (Muggleton, 1995), because these systems do not support learning
from batches, but instead accept training examples in the form of single logical atoms (?). Therefore,
the complexity of the learning task increases substantially.

We performed 10-fold cross-validation with OLED and the batch ILP algorithm. The experiments
were conducted on a Linux computer with 8 Intel i7-4770 cores at 3.40GHz and 16 GBs of RAM. Both
OLED and the batch ILP algorithm were implemented in the Scala programming language, using the
Clingo answer set solver3 as the main reasoning component.

Table 3.1 presents the experimental results in terms of accuracy (precision, recall and their harmonic
mean) and efficiency. SC denotes OLED’s set-cover-based batch ILP rival. As expected, SC achieved
better accuracy; each rule learnt by SC is highly optimised over the entire dataset. On the other hand,
SC’s average training time is larger than 3 hours, while OLED learns fraud patterns of comparable quality
over the entire dataset in approximately 21 minutes.

In our second experiment, we studied how the quality of the outcome, in terms of F1-score, and
the average processing time per batch are affected in OLED, by varying the batch size. To this end, we
conducted experiments with windows of 2.5, 5, 10, 15, 20, 25 minutes. The top graphs of Figure 3.2
present the results. The top-left graph in Figure 3.2 presents F1-score as a function of batch (window)
size in minutes and the total number of batches in the training set. Each F1-score value is a micro-
average obtained from a 5-fold cross-validation. The top-right graph in Figure 3.2 presents the average
processing time per batch as a function of the batch size (in average number of transactions and minutes).

2
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

3
http://potassco.sourceforge.net/

D3.3: Event Recognition and Forecasting Technology – Part II

3.3. Experimental Evaluation page 15 of 18

30

Batch size (min)

20
10

00
1

Batches

2
#10 5

0.7

0.75

0.8

0.85

0.9

3

F 1 s
co

re

Batch size (min)

40
20

00

Batch size (transactions)

2040

30

25

20

15

10Ti
m

e
pe

r b
at

ch
 (M

se
c)

F 1 s
co

re

0.7

0.75

0.8

0.85

0.9

Batch size (hr)0
10

20
30

Batches 0
5000

10000
15000

Batch size (hr)

40
20

0

Batch size (transactions)

010002000
0

1

2

5

4

3

Ti
m

e
pe

r b
at

ch
 (s

ec
)

Figure 3.2: F1 score (left) and average processing time per batch (right) for data batches of 2.5, 5, 10,
15 and 20 minutes (top), and 1, 6, 12 and 24 hours (bottom).

This figure shows that the processing time grows almost linearly with the window size. Regarding
predictive accuracy, the results indicate that the F1 score grows for window sizes up to 15 minutes, while
it remains almost constant for larger window sizes. Windows smaller than 15 minutes often contain only
part of the transaction sequence involved in a fraudulent activity. Consequently, OLED learns incomplete
patterns of lower quality.

To stress-test OLED, we also performed experiments with larger window sizes: 1, 6, 12 and 24 hours.
The bottom graphs of Figure 3.2 present the results. The F1-score remains almost constant for varying
window sizes. Furthermore, the processing time still grows linearly with window size.

3.3.1 Experiments with Real Data
We also performed experiments with Feedzai’s real dataset for credit card fraud. Learning a model
of high quality from this dataset requires to use a large number of specialized features to discriminate
between fraud and non-fraud instances. We did not use most of these features, since, due to privacy
issues, we had limited access to the dataset and thus we were not able to perform feature engineering,
which requires a significant amount of data analysis and experimentation.

We used a summary of the dataset (whose total size is approximately 1 TB) for training with OLED.
This summary consisted of 430 MBs of data and it contained the entirety of positive examples from the
original dataset, plus a number of negative examples, so that the positive/negative example ratio in the
summary was 30/70. Similar data summaries are used by Feedzai for the training of their algorithms.

Our experimental setting was as follows: We used the summary dataset to learn a set of fraud patterns
with OLED. We used a 10-fold cross-validation process on the summary, where in each fold we used 90%
of the positive and 90% of the negative examples for training, retaining the remaining 10% of positive

D3.3: Event Recognition and Forecasting Technology – Part II

3.3. Experimental Evaluation page 16 of 18

Test set size Precision Recall
4.3 GBs 0.758 0.203
43 GBs 0.682 0.203

Table 3.2: Precision and recall for OLED on two test sets of different sizes.

and negative examples for testing. In this process, OLED was able to learn theories that achieved a
precision score of approximately 0.95 and a recall score of 0.2 on average, where these scores were
obtained by micro-averaging results from each fold. We subsequently evaluated the quality of our learnt
theories (the best theory from the 10-fold cross-validation process) on larger test sets, obtained by adding
a number of extra negative examples to the summary (recall that the summary already contained the
entirety of positive examples for the original dataset).

We created two such testing sets, of size of one and two orders of magnitude larger than the summary
dataset (4.3 GBs and 43 GBs respectively). Table 3.2 presents the results, which indicate that OLED
learned a small set of relatively good rules, i.e. a set of rules that recognize a small number of true fraud
instances (low precision), but also a small number of false fraud instances (satisfactory recall). During
both learning and testing, the data were present in windows of length of 1 day. We attempted to learn
form smaller windows (15 minutes, 1 hour, 10 hours), but we obtained poor results with much worse
precision scores (much larger numbers of false positives) and with no significant gain in recall.

D3.3: Event Recognition and Forecasting Technology – Part II

Bibliography page 17 of 18

Bibliography

A. Artikis, G. Paliouras, F. Portet, and A. Skarlatidis. Logic-based representation, reasoning and ma-
chine learning for event recognition. In Proceedings of the Fourth ACM International Conference

on Distributed Event-Based Systems (DEBS), pages 282–293, 2010. doi: 10.1145/1827418.1827471.
URL http://doi.acm.org/10.1145/1827418.1827471.

I. Correia, F. Fournier, and I. Skarbovsky. The uncertain case of credit card fraud detection. In Proceed-

ings of the 9th ACM International Conference on Distributed Event-Based Systems, pages 181–192.
ACM, 2015.

G. Cugola and A. Margara. Processing flows of information: From data stream to complex event pro-
cessing. ACM Computing Surveys, 44(3):15:1–15:62, 2012. doi: 10.1145/2187671.2187677. URL
http://doi.acm.org/10.1145/2187671.2187677.

L. De Raedt. Logical and relational learning. Springer Science & Business Media, 2008.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN 1532-4435. URL http:

//dl.acm.org/citation.cfm?id=1953048.2021068.

F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory revision: Induction and abduc-
tion in inthelex. Machine Learning, 38(1-2):133–156, 2000.

J. Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of rule learning. Springer Science & Business
Media, 2012.

J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

J. Gama and M. M. Gaber. Learning from data streams. Springer, 2007.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American

statistical association, 58(301):13–30, 1963.

T. N. Huynh and R. J. Mooney. Max-Margin Weight Learning for Markov Logic Networks. In Proceed-

ings of the European Conference on Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML PKDD), volume 5781 of Lecture Notes in Computer Science, pages
564–579. Springer, 2009.

D3.3: Event Recognition and Forecasting Technology – Part II

Bibliography page 18 of 18

T. N. Huynh and R. J. Mooney. Online structure learning for markov logic networks. In Proceedings of

the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery

in Databases (ECML-PKDD 2011), volume 2, pages 81–96, September 2011. URL http://www.

cs.utexas.edu/users/ai-lab/?huynh:ecml11.

N. Katzouris, A. Artikis, and G. Paliouras. Online learning of event definitions. TPLP, 16(5-6):
817–833, 2016. doi: 10.1017/S1471068416000260. URL http://dx.doi.org/10.1017/

S1471068416000260.

E. Michelioudakis, A. Skarlatidis, E. Alevizos, A. Artikis, G. Paliouras, N. Katzouris, C. Vlassopoulos,
and I. Vetsikas. D3.2: Second Version of Event Recognition and Forecasting Technology – Part II,
2015. URL http://speedd-project.eu/sites/default/files/D3.2_-_Second_

version_of_event_recognition_and_forecasting_technology-revised.

pdf.

S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13:245–286, 1995. doi:
10.1007/BF03037227.

A. Paschke and M. Bichler. Knowledge representation concepts for automated SLA management.
Decision Support Systems, 46(1):187–205, 2008. doi: 10.1016/j.dss.2008.06.008. URL http:

//dx.doi.org/10.1016/j.dss.2008.06.008.

B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In Proceedings of the Tenth

National Conference on Artificial Intelligence, AAAI’92, pages 50–55. AAAI Press, 1992. ISBN
0-262-51063-4. URL http://dl.acm.org/citation.cfm?id=1867135.1867143.

D3.3: Event Recognition and Forecasting Technology – Part II

	Introduction
	History of the Document
	Purpose and Scope of the Document
	Relationship with Other Documents

	OSL: Online Structure Learner
	Experimetal Evaluation
	Learning Challenges
	Experimental Setup
	Experimental Results

